
Copy in Python (Deep
Copy and Shallow Copy)
In Python, Assignment statements do not copy objects, they create bindings
between a target and an object. When we use the = operator, It only creates a
new variable that shares the reference of the original object. In order to create
“real copies” or “clones” of these objects, we can use the copy module in Python.

Syntax of Python Deepcopy

Syntax of Python Shallowcopy

Example:
In order to make these copies, we use the copy module. The copy() returns a
shallow copy of the list, and deepcopy() returns a deep copy of the list. As you can
see that both have the same value but have different IDs.

Example: This code showcases the usage of the copy module to create both
shallow and deep copies of a nested list li1 . A shallow copy, li2 , is created using

Syntax: copy.deepcopy(x)“

Syntax: copy.copy(x)“

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-programming-language/

copy.copy() , preserving the top-level structure but sharing references to the inner
lists. A deep copy, li3 , is created using copy.deepcopy() , resulting in a completely
independent copy of li1 , including all nested elements. The code prints the IDs
and values of li2 and li3 , highlighting the distinction between shallow and deep
copies in terms of reference and independence.

Output:

What is Deep copy in
Python?
A deep copy creates a new compound object before inserting copies of the items
found in the original into it in a recursive manner. It means first constructing a new
collection object and then recursively populating it with copies of the child objects
found in the original. In the case of deep copy, a copy of the object is copied into
another object. It means that any changes made to a copy of the object do not
reflect in the original object.

Deep copy in PythonImage not found or type unknown

Example:

import copy
li1 = [1, 2, [3, 5], 4]
li2 = copy.copy(li1)
print("li2 ID: ", id(li2), "Value: ", li2)
li3 = copy.deepcopy(li1)
print("li3 ID: ", id(li3), "Value: ", li3)

li2 ID: 2521878674624 Value: [1, 2, [3, 5], 4]
li3 ID: 2521878676160 Value: [1, 2, [3, 5], 4]

https://media.geeksforgeeks.org/wp-content/uploads/deep-copy.jpg

In the above example, the change made in the list did not affect other lists,
indicating the list is deeply copied.

This code illustrates deep copying of a list with nested elements using the copy
module. It initially prints the original elements of li1 , then deep copies them to
create li2 . A modification to an element in li2 does not affect li1 , as
demonstrated by the separate printouts. This highlights how deep copying creates
an independent copy, preserving the original list’s contents even after changes to
the copy.

Output:

import copy
li1 = [1, 2, [3,5], 4]
li2 = copy.deepcopy(li1)
print ("The original elements before deep copying")
for i in range(0,len(li1)):
 print (li1[i],end=" ")

print("\r")
li2[2][0] = 7
print ("The new list of elements after deep copying ")
for i in range(0,len(li1)):
 print (li2[i],end=" ")

print("\r")
print ("The original elements after deep copying")
for i in range(0,len(li1)):
 print (li1[i],end=" ")

The original elements before deep copying
1 2 [3, 5] 4
The new list of elements after deep copying
1 2 [7, 5] 4
The original elements after deep copying
1 2 [3, 5] 4

What is Shallow copy in
Python?
A shallow copy creates a new compound object and then references the objects
contained in the original within it, which means it constructs a new collection
object and then populates it with references to the child objects found in the
original. The copying process does not recurse and therefore won’t create copies
of the child objects themselves. In the case of shallow copy, a reference of an
object is copied into another object. It means that any changes made to a copy of
an object do reflect in the original object. In python, this is implemented using
the “copy()” function.

Shallow copy in PythonImage not found or type unknown

Example:
In this example, the change made in the list did affect another list, indicating the
list is shallowly copied. Important Points: The difference between shallow and
deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

A shallow copy constructs a new compound object and then (to the extent
possible) inserts references into it to the objects found in the original.
A deep copy constructs a new compound object and then, recursively,
inserts copies into it of the objects found in the original.

Example: This code demonstrates shallow copying of a list with nested elements
using the ‘ copy' module. Initially, it prints the original elements of li1 , then
performs shallow copying into li2 . Modifying an element in li2 affects the
corresponding element in li1, as both lists share references to the inner lists. This
illustrates that shallow copying creates a new list, but it doesn’t provide complete
independence for nested elements.

import copy
li1 = [1, 2, [3,5], 4]

https://media.geeksforgeeks.org/wp-content/uploads/shallow-copy.jpg

Output:

Источники
copy in Python (Deep Copy and Shallow Copy)
Difference between Shallow and Deep copy of a class

li2 = copy.copy(li1)
print ("The original elements before shallow copying")
for i in range(0,len(li1)):
 print (li1[i],end=" ")

print("\r")
li2[2][0] = 7
print ("The original elements after shallow copying")
for i in range(0,len(li1)):
 print (li1[i],end=" ")

The original elements before shallow copying
1 2 [3, 5] 4
The original elements after shallow copying
1 2 [7, 5] 4

Revision #1
Created 15 February 2024 04:39:13 by Антон Сергеевич Абраменко
Updated 15 February 2024 04:43:59 by Антон Сергеевич Абраменко

https://www.geeksforgeeks.org/copy-python-deep-copy-shallow-copy/
https://www.geeksforgeeks.org/difference-between-shallow-and-deep-copy-of-a-class/

